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ABSTRACT

A physical optics approximation to the monostatic and bistatic
scattering for axial incidence from rotationally symmetric targets is
developed. Both conducting and lossy dielectric bodies, character-
ized by a surface impedance -equal to the intrinsic impedance of the
scattering medium, are treated. The resulting general expressions,
which are valid within the physical optics approximation for any ro-
tationally symmetric target, are specialized to long, thin, shapes,
ei'rher finite with sharp apices or semi infinite with a sharp apex, by
a modification of the normal physical optics approximation.

Theoretical calculations of the axial back scatter from spheres,
double cones, parabolic ogives semni-infinite cones, and semi-infinite
cylinders with conical caps for several values of the scatterer surface
impedance are presented. Theoretical calculations of the bistatic E
plane (plane of the incident E field) cross-section of conducting semi-
infinite cones, double cones, and serni-infinite cylinders with conical
caps are also given. Where possible, the theoretical results are
compared with the exact solution or with representative experimental
data to indicatj the validity of the theory.
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CHAPTER I

INTRODUCTION

The scattering of a plane, monochromatic, electromagnetic

wave incident on perfectly conducting targete as predicted by the

physical optics approximation has been developed previously for

both the monostatic, 1 and bistaticZ situations, Little has been done

however, in the development of simple approximate solutions to the

scattering from imperfectly conducting targets. Further, the stand-

ard physical optics results fail, in general, to take into account the

shadow region of the scatterer. Application of these results then to

long, thin shapes show considerable deviation from experimental

data, 4 even for targets of a size generally considered to be within

the physical optics range. The scattering from long thin shapes has

been of interest recently, . both as an approximation to the scat-

tering cross section of missile type targets, and as a study of in-

herently low-reflection shapes possibly applicable to the camouflage

of targets by shaping for minimum radar return.

The present investigation was inspired by the work of Adachi,

who derived the back-scattering cross-section along the symmetry

axis of finite and semi-infinite bodies of revolution using a varia-

tional technique. The success of this derivation in predi,:ting the

axial backscatter from symmetric and non-symmetric double

1



in
cones encouraged the present extension to bistatic scattering cross-

sections and to imperfectly conducting targets. Since, when certain j
simplifying assumptions are made, Adachi's solution reduces as a

first order approximation to the physical optics result where the

physical optics currents are assumed over the entire scatterer

surface rather than just the illuminated portion, it was felt that an

extension of the results to imperfectly conducting scatterers and

bistatic cross-sections could be made using- this modified-physical

optics approximation and the radiation integral. 6

In this report, general expressions are derived for the mono-

static and bistatic scattering cross-sections for axial incidence on

rotationally symmetric targets with an arbitrary surface impedance.

The physical optics approximation and the radiation integral are used.

These results are then modified for long, thin targets which are either I
finite with two sharp apices or semi-infinite with one sharp apex, It

is shown that this modification removes the polarization dependence

of the expressions for the bistatic cross-sections for the perfectly I
conducting target. Experimental evidence indicates that the modified i
results are valid in the E-plane for long, thin targets.

A variational solution for the forward scatter from conducting

targets of the long, thin class is derived to supplement the physical

optics results.

I



The following theoretical calculations are presented:

a. Axial backscatter from spheres, double cones, semi-

infinite cones, and semi-infinite cylinders with conical and ogival

caps for ratios of the surface impedance of the scatterer to the

free-space impedance of 0, 0. 25 0.5, and 0. 75;

b. Bistatic E-plane scattering cross-sections of conducting

semi-infinite cones, double cones: and semi-infinite cylinders with

conical caps.

The exact solution for the backscatter from spheres under im-

pedance boundary conditions, and experimental measurements of the

monostatic and bistatic cross sections of symmetric double cones

are also given to indicate the limits of validity of the theory.

The report concludes with a discussion of applications of the

derived equations, some general conclusions concerning the scat-

tering from rotationally symmetric targets, and a summary of the

significant results.

In the Appendix, certain integrals encountered in the calcu-

lation of bistatic cross-sections of double cones are evaluated, and

curves of a tabulated integral, which were used for interpolation,

are presented.
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CHAPTER II

DERIVATION, OF THE SCATTERING CROSS-SECTIONS 1
The cylindrical coordinate system R, , z to be used-in this I

development is shown in- Fig. 1. The rotational axis of symmetry of

Xz
W^

RI

y ( x',y', z') I
Fig. 1. Cylindrical coordinate system.

the target is coincident with the z axis, and the target shape is de-

scribed by the radius, a(z), as a function of z. The unit vectorAi
is a tangential generating element of the scatterer and z • = cosO. -

The unit normal tL the target surface is n and -6 is the position

vector (from origin) of a surface element ds. The target has the

constitutive constants i and e, the complex permeability and per- I
mittivity, respectively.
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6,
PFrom Stratton,' using an -eijwt time convention, the magnetic

'fieldis catte red- at-a point-x 'Y)zexterior~to the -closed surface, S)

due to an-ificident field E1  Hk on S; in terms~ of suiface currents

on y-s ien by
rjkR 1
~~ T

+ V X R ^n Xn did

+ 4  ~ AT)

-T -T
where, n 1s a unit outwa rd normal to S, I and H are the total

electric and magnetic fields on S and V operates only on the field

points. Using the vector identities, 7 -

(2)

V X (i XS) IV.-bV -97Z+ (.V~a (T. V)b,

then

(3) 1x (nf V ;- x (n xH
R R

kR T jkR
(4) x[-( x n]=VR - (ET Xn),

and

ejR T _T
IejkR

5 R



In the far field,

ej k zkkr -jk(p. 'r* )

(6)R r

(6) !jR jk, -jklF~ej k

eJkR rjk __e

R r

where r is a unit vtyctor in the direction of the point x', y", z" .

From (3), (4), (5) and (6) then,

(7) -s jkZeikr -T -T, ejk(,? r r)(7)4vwl~r '  Xn).r(E xn'r] do

+jkejkr STA xT-jk(. - dr)
r:( (RX1i) d,.

4wr

Let the plane, monochromatic, incident wave propagating in the z

direction be given by,

^ j(kz-wt)

(8)

zo

z0 is the intrinsic impedance of free space, and k is the free space

wavenumber. The plane of incidence is defined by n and the z axis.

At each point on the surface of the target the incident field is sepa-

rated into components in and normal to the plane of incidence. If

subscripts 1 and 2 denote components in and normal to the incident

plane respectively, then with the factor ejut understood,

6



= cos e-jk
(9)

S cos jkz

1 0

E2 sin e
(10)

-i a sin eJkz
zo

where

A A cos + + 9 sink
(li ' =-x sin +yCos.

On the surface S, the scattered fields are given approximately by

-s -i _iE = R1 E + R1 Ez
(12)

- s _i -1
H =-RI H, - RAHz,

where R 1 and R± are the plane sheet reflection coefficients for

polarizations in and normal to the plane of incidence, respectively.

Equation (12) is the physical optics approximation on the illuminated

portion of the scatterer or the modified physical optics approxi-

mation over the entire scatterer, as will be seen later. Thus, on

the surface, S, the total fields are given by,

7



TI
-T R jkz

E1  ~ -z+E a[+ 1 ]cos e

ST -i -s jkz
E 2  E 2  -z[l+RL]sin e
_=T -_i s cos0 ejkz
H, =H 1 +H, Hi [1=R ,1 e

- T - -- -sin,$ jkz
Hz =Hz + Hz a[1-R ]- e

Using the coordinate description shown in Fig. 1,

TI
(14) n .-T E [ sino-'.cos]sinecos [1+alR jejk ,

(15) ,, -T(15) nX E2 -['XsinO coos0+^sinG sino+^zcos G)sino[I+R,]

*jkz

(1)T coo iik
nx(nxH )(oxsin+-9com 1 y~ zo

A -T AA
(17) nX(nXH =-{JxsinOcosO+ysinesin +

sinO sink [1uRj]eJkZ I

Co ) zo 1: k

The assumption is now made that the Leontovich! conditions for the I
application of the impedance boundary condition are satisfied. That I
is, the depth of penetration into the body and the wavelength in it -

a, e small in comparison to the free space wavelength, in comparison I
to the distances from the sources of the field, and in comparisQn to

8Ii
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the radii of curvature of the surface of the body. Hence the product

lie is complex and the imaginary part ofJeW is a large quantity.

Under these conditions the boundary condition on the surface-s is

where zs =J 7is the intrinsic impedance of the scatterer.

~ T
(19) Zs =

The absolute valu' in Eq. (19) is taken to mean the modulus of the

vector, retaining the phasor nature of z s . In other words, z s =F C

may be complex.

From Eqs. (14), (15), (16), (17) and (19) then,

I -o sine
(20) Rj = s

I + sine
zs

and

1-- sine(21) R. = -
zo i

which are the approximate Fresnel reflection coefficients.S Then,

(22) -T X'= {'sin cos sinO[R- R,,]+

y sin 0[1+ R sin' + R11cos *
] +

cos Osin [I + P. 1) e jkz

9



(23) x = {Xsine[1 - RjsinZ?- R1 1COS2 ]+

sin cos si R 11 +

cZ C oS - 4 1 - A• y eJ5- Z*1
If the far field is to be calculated in the H-plane or yz plane of

Fig. 1, for y>.O
A A. A

rysin [3 * -zcos

(24) p(^ sin- 0 Cos +^-sin 0'sin-+

+9 Cos

Thus, since p cos z and p sin 0 a (z),

(25) p ^ a(z) sin + sin p z cos

and in the H-plane far-field calculations

(26) rX ( X jT) = {x(sin P cos e cos [1I-RI1 ]

-cos sinesin+ coso[Rl=Rll]) -ycosp sine.

(cos 4[l-R1 ]+sinz +[I-R 1 ])- i" sinp sin •

(cos [ I-R ,1 +sin 2 [I-R ])} jkz

In the r 1 )41  spherical coordinate system of Fig. 1 where i

=r - 'in the H-plane,

_s~s s-r(27) He/I = 9(-cos P H - sinP H).'

10 "



Equation (Z7) is valid in the far field and the "front"' half of the H-

plane (y ? 0).

From Eqs-. -7), -(Z?.), '(25), (26)-and-(217), the -scatte red-niagnetic

field in the H-plane is~obtained inthe far field and for-y >0as

(28) H8S .. ~- {kekr cos S Bslfe, Cos id1(+kRiI-cosP(1 -RIi )-

si z (1+R~ -o 3(R)] jk[a (z)sin 0sin P -z(con A +1)]d

+sinpSS[co sin (+±)+sin P uinecoo' o{i - R11) +

sin z 0(1-R.))] e.jk~a(z)sin4 sinP -z(cos P+l)] ds}

In the E-plane or xz plane of Fig. 1,

A A A
r =x sin P -z Cos P x 2 0

(29)

= p {*x a in 0-,coso+9 sinO ,sino + coo e'}

and

(30) A r a (z) cos 0 sin P3 - z coB P3

Using Eqs. (23) and (29),

(31) r x (^W<T 1^{cosp sinesino cos-O[R1 - Rill

y[cosl3 sinO(cos 4 [l-R 1 ]+sin2 441-R1 ]l)

+sin Pcos 0cos I -RI, 1 ]+ ^zsin Psin 0sin 4)cost

[R 1L- R ejk
'I o



Again in the r", o', 0 // spherical coordinate system in the E-plane, 9

'(32) H- " (-sin Hx + cos Hy) = y, for x;> 0.

From Eqs-. (7), (22), (30), (31) and (32)', the scattered magnetic field

in the E-plane far field is obtained for x _ 0 as,

+~

(33) He -e 7 r .$5 Cos sine[l+R 1 -cosP(l-RI)q 4,rrz o

e-jk[a(z)cos bsinP - z(cos P + 1)] do -

s sin 0 [cos P (I-R.)-(l+R)]

e -jk[a(z)cos~sinP-z(cos P1)] do

-sinP-coscos ,,,, +- ,] I

e-jk~a (z)cos 0 inP -z(cos P + 1)]d.•dsJ .j

Equations (28) and (33) give the entire scattered magnetic field in

two orthogonal planes, since, by symmetry, the other components

vanish. Since ds = a(z)J(a(z) + I dz do) and the limite of inte-

gration on 4 and z are 0 to 2w and 0 to t / respectively, where

z = / denotes the geometrical shadow boundary of the scatterer, the

integrations on 0 in Eqs. (28) and (33) may be performed without -J

specifying a(z). From Eq. (28), there are the following forms of

integrals on 4),

12 *1



cosr e -jkA sin o4)o

(34) )sinz 4e- k i

.2 1s in o e jk A sin o d4)

00

(35) e-jkAsin4) Jn(kA)eflJnO

and assuming that the summations re uniformly convergent with

respect to + so that the order of integration and summation may be

interchanged, there are obtained,

(36) Sr sin e-k sin4) do -j27r J, (M)
0

(37) C-lfcosz2 4e-jk~51fl4 ) d=w Jo(kA) + l~jz (kA) + J-, (kA)

Z3 J (kA)
kA ,

(38) Ssin oe ,ksi4do= w J0 ~A z(kA)- J-72 (kA)

2w J, (M),

13



zI

and for the integrals on -in Eq,. (33),

- 2*1okco

0-I

V ' 27r "

(40) $cosoz eTkA cs Jo(kA)- rJz (kA)-!TJ-z kA',
2 2

.1!

0

27 2Jp [kA)

The scattering cross-section is defined" as, )

(42) lim 47rr i
r - co

From Eqs. (28) and (42):, using Eqs. (36), (37), and (38) and the

definitions of R 1 a:d R from Eqs. (20) and (21)p the bistatic scat-

tering cross section in the H-plane is found as,

(43) qH-plane(P) = ka .cosp a (z)a' (z t zl

zJx [kalzlsinp] eJkzlcoep + 1) dz

kcz(z) sin P"

14



/ I .Aa'&(Z)- coslcT )Z1

-CosP a c(Z)a(z) 8 c'z Hlszsnr
o + IdCz) 2+Z

jkz(cos ~+1) d

z, a (Z) a (Z) [ up]Eikz(cosp+l)dz+j sinP p (Zf7-zT- + I'Z ,[azs

, kz(z) sinp

a(z)a(z))z,_ ~ ikz(cop +)dz
o 0(a(z))+ +a')1ka (z) sin P)

And from Eqs. (33) and (42) using Eqs. (Z7), (39)) (40) and (41), the

bistatic scattering cross-section in the E-plane iv,

(44) = 41 kZICatz~ z srz1azf z))+~zJ'(z)cos p1
(4) -E-plane)=w' ao'' (zai(z) ?+ o'~

*Jl (ka(z)sinp P ]jkz(cos P +1) dz

r z J(7 -)f- z .a(z) J1 [ka (z~fin P]
0 cz z Od( Z4~ )+1 + zsdz(z) 3 ka(z)sinpi

* jkz(con P + 1) dz

+ It~ zoa (z)ct'(z) *Jidka(z)sinp ]E kz(cosp +l)dz1

15



where the relationsM

J0(P) -J2 (o) Ij,(
(45) J 0 p+zp= 2 51-P --

have been used to simplify the expressions. Setting the bistatic angle

to zero in either (43) or (44) gives the monostatic axial echo area4

under impedance boundary conditions as

(46) Lr(O) *Tk -a z&z zj(OZ)7) zoa'z) IejZkz dz
0Lzsi(ez)'+ zoa'(z)J

I~~z z01 (a z))2+l.d~z(z) j~kz 1
cXaWo z z 2a,(z)0 dz

If the target is perfectly conducting, z. = 0, from Eq. (46) the axial

echo area is found as)

(47) (r( 44k2 $a (z)a'(z) CjZkzdz ,

which is identical with Adachi's 3 first order approximation, except

for the integration limit.

From Eq. (43) with z. 0 the bistatic croos-sectioni in the H.

plane for a perfectly conducting target is obtained as,

161



(48) (rM 1) = 4Tk2 a (z)(Z)Jo[k. s e + I) d .

H-plane

Similarly, from Eq. (4-", the bistatic cross-section in the E-plane for

a perfectly cond'ucting target is,

(49) aM(P) = 4TrZ 2 jsinp £a(z)Jlka(z~sin P e kZ(cOsP+l)dz

0
E-plane

Ccspt(z)a(z)J~ka(z)in3]e J( dz

0 I

Now if the Adachi conditions are applied to the target, requiriug that

the scatterer be long, thin, and have a sharp apex if semi-infinite or

apices if finite, and that the slope of thee scatterer a)ong the z axis-be

reasonably small everywhere, then

sin 0 2 tan 0= a (z) << 1
(50)

Cos 0 "" 1

In this case the physical optics currents are assumed to ex? over

the entire length of the scatterer (i.e., 1 -1), and from 1q. (43),

17



Hl-lan a' z4z) kcz(z)sinp I
jikz(cos P +1)dz

-COS P $a Wza / z(Z) 8P J[ka(z)snp ]kz(cs P+1)d
+O! a(z)I

oL a (z) (z)

+jsin J kz(co + )dj
J1+ 28 a'(z) i ka(z)sinp]ad

ZI

Sa(z)p&(z) /jzcoA1

+snJ ijk (z)s npr d

zo

For the perfectly conducting long, thin body, zo 0,J

(52)ZP) lae4rkzl Sa (z)a(z)jo [ ka(z)s inp Pejkz(cos P+l dzj.I,

In ths E-plane from Eq. (44),A

181



[I- !2a(z) cos p

E-plane Io+ + [ )(z)S]

e jkz(cos + 1)dz

a (z~sa::z'(z) Ji[kci(z)sinp] ejkZ(cos P+l)1

20 a~siz)

s alzI0'z) jkz(co s +1)
+j sin zo /z J[ka (z)sinP e dz

zs

For the perfectly conducting target,

(54) 2) 4kij sinp $a(z)J[ka(z)sinp ]ejkz(co s P+l)dz

E-plane

-cos I (z) C (z) Jo[ka(z)sin P+],kz(coP+)dz

From Eq. (45) the axial back scatter from a long thin target is,
r 2 j1

55) ]z(O) 141k 1 - a(z)(a(z)) e jZkZdz
(55) ~ ~ 2 s (0 44rk2 0 z (l+.R(z))(l+ zs a'(z))

For a perfect conductor, from Eq. (55)

(56) 4(r/(0) =4kj a (z) a (z) ejzkZdz

19



The expression in Eq. (56) is the Same as Adachis3 first order ap-

proximation.

The standard physical optics results for the H-plane, E-nlane

and monostatic cross-sections respectively are given by Eqs. (43),

(44), and (46) for an arbitrary surface impedance, and by Eqs. (48), 1

(49)) and (47) for the perfectly conducting scatterer. The corre-

sponding results for the long, thin targets, where it is aisumed'that

the physical optics currents on the illuminated surface exist over the

entire scatterer (1i *t), that the target has a sharp apex or apices,

and that the slope along the z axis it, reasonably small(ja'(z_)+1: 1),

are given by Eqs. (51), (53) and (55) for an arbitrary surface im-

pedance, and by Eqa. (52), (54), and (56) for the perfect conductor.

These equations comprise the results necessary to apply the physical

optics approximation to any general rotationally symmetric target

with an arbitrary surface impedance and a modification of the physical

optics approx.mation to a particular class of long, thin targets with

an arbitrary surface impedance. 1

In the case of long, thin targets, where a modification of the -j

physical optics approximation is used, three difficulties exist which

must be eliminated, or at least rationalized, before proceeding to 1
an application of the results. In the remainder of this section, it

will be demonstrated that; (1) the assumption of the physical optics

20
zo[
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currents on the shadow region of the scatterer removes the polari-

zation dependence of the bistatic results for rotationally symmetric

conducting targets. This will be proved in particular for Eqs. (52)

and (54) (the E- and H-plane results for long, thin targets), and a

general proof will also be given. (Z) The accuracy of the forward

scatter cross-section predicted by the long, thin target results is

questionable, at least for realistic targets, and an alternative vari-

ational result is derived. (3) The Leontovich conditions$ for the

application of the impedance boundary condition cannot be satisfied

at the apices of long, thin targets, and the contribution from these

portions of the scatterer are in doubt. Further, it is apparent'

from the derived results in Eqs. (51), (53), and (55), the long, thin

target cross-sections:foran arbitrary surface impedance, that for

finite scatterers particular combinations of impedance ratio (za/zo),

and target slope (a (z)) in the shadow region, will result in an en-

hancement of the cross-section ov-r the corresponding result for the

perfectly conducting target. This is demonstrated inChapter III for

the case of axial backscatter from symmetric double cones. No

experimental evidence is available at present to either support or

disprove this result, although backscatter enhancement has been

demonstrated for a conducting circular ogive with an asymmetric

absorber coating on the rear apex. Z6

Z1



The lack of polarization dependence in Eqs. (52) and (54) may

be demonstrated as follows. In Eq. (52), using the relationz

(57) p. jJ (p)] p jo(p))

the integral may be written as

(5) 1 da (ZlJrBc z)]}ejkz(cosP+l)dz. i
k sin p d

An integration by parts gives,I

(5)~ (Cos+l a' )Jjk inP ]e jkz(COB P~ Id

It may be seen by comparing Eqs. (52) and (54), thatI

(60) aK,(P) o(P)

E-plane H-plane1

This may be shown in general for rotationally symmetric targets as

follows;*~ for a perfectly conducting target, the physical optics ap-

proximation gives tne scattered E and H field (tangentiaI components) in
as Es -.Ei H8s= Hi, over the illuminated portion of the scatterer,

and as E S - Ei, HS -H i over the shadow portion. The extended

*:The author is indebted to Dr. E. M. Kennaugh for this proof.



long, thin body-approximation however gives (tangential components)

Es = -E , HS = Hi over the entire scatterer. Thus Eq. (1) becomes,

for long, thin, shapes,

Now Eq. (1) holds when the scattered fields or the scattered fields

plus any fields Whose sources are external to s are integrated.

Using duality, and recalling that the physical optics scattered fields

on the illuminated portion are assumed over the entire surface s, the

incident field may be subtracted and'there is obtained from Eq. (1),

(62) is~= 2 ejkR sX L' ~ ido.

Thus, if the H-plane scattering is calculated using Eq. (61) and the

polarization of the incident fields is then changed by f/2, keeping the

same direction of propagation, the E-plane scattering may be calcu-,

lated using Eq. (62). Since Ei and Hi are related byl J"l" in the far

field, the results from Eqs.(61) and (62) are seen to be identical.

The general result may be stated then that if the scattered fields

(Es and H s) are assumed to be the negative and positive respectively

of the incident fields (Ei and Hi) over the entire scatterer surface,

then the results using Eq. (1) in any two orthogonal planes are iden-

tical. Clearly, there is no way of deducing in general whether the
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bistatic results are more valid in one plane thai andther or possibly

are an average of the two orthogonal, planes, and this question nust

be resolved by a comparison of the theory.,-ith.expe rimetl-results .

In the case of a sphere, Keller's geometrical theory of diffraction zs

predicts that a diffracted ray traveling around the, sphere-and-thence - I

to a receiver would be obtained in the E-planebutn6t in the H-plane.

It might be reasoned from this result that the predicted scattering,

will correspond to the E-plane, but this type of deductliontAis-not

completely conclusive by any means. In Chapter IV it is shown that

theoretical calculations using the long, thin target approximation do

agree with E-plane experimental results.

A second obvious difficulty with the results of the modified in-

tegral formulation for long, thin targets is-the cross-section predicted

for forward scatter. If 3 =r. incEq. (51) or (53) then,

(63) crv) = 47rk a(z) ct(z) dz z

For finite scatterers where a(0)= a(1) 0, an integration by parts "

yields I
(64) oJ(1r) 0, 1

which is obviously in error, at least for realistic targets. The for-

ward scattering cross-section for axial incidence from rotationally

I
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yii~ti, coductinig, long, -thin targets- with a4picesiay also be

derived usinig a variational- techikque. From ith- -results of-Storer

atid Sevidk,- , the variational efxpressioln frtebsai itr

cro-ss-sectiohis'fund~ito be--

2 2 Ea4, (r),- r~' sr-s$~P4,7i
(65) 4(MP) 4=

where a and are unit vectors in the polarizatib n aknd prp.gation

-i
directions, respectively. Thus Ed , P r) -is an i ncident- field polarizted

in the a direction and propagating Intep direction, -E~ (r) is the

scattered field on the scatterer surface due to E2' , P (r) and 3 a, r

ja are the surface currents induced on the scatterer-by

Ea,)(r) and jF&, (r%) respectively. LeAt

d-=a =x

A A(66) P z

then the physical optics currents are,

(6)J,(r) [gcos - sin~sinf]eikz

=[Zcos +' uine0sin ,]e-jz
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Usifig,.the surface scattered fields found by Adachi, 3

2.z~ {()j~kcl(z)} I c ,ikz -
E 2k7

(68) .{a(z)+jka(z)} !in4L ejZ1

-1 sin ejkz

(E is-the scattered electric field due to the equivalent magnetic cur-

rent, kz = z sin4 e .) Equation (64) gives

(69) &(nir)i 16wrk 4  ~aaza~z z ~ ~ z

{c?(z)+j2ka1(z)}z)jz 2 +d+3

For.cz'(z) << 1, and-ct(0) a (1) 0, an integration by parts again

yields

(70) a-(ir) 4rk2 Sa'z)a/z) dz 0.

When the approximation Iaz 2 +1~1 is assumed the deduction must

be made that for very large bistatic angles the assumption of the

physical optics currents on the shadow portion of the scatterer.leads

to scattering cross-sections which would only be valid if the scatterer

approached a needle-like shape. If the currents are removed from
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the shadow region, that is, if 1i denotes the shadow boundary then

j;(r) 0 o Z.>t

(71)
J&(r) = 0 z'I

and there is obtained fr6m Eq. (65),

(72)(r(T) = 6?r a(z)i(z)(z)Z+l dz YS a (z)d(z)JTZT'TI dz .

(72) o~l) =16v~ I{cN( z)+j~kdt~z) )a (z)a( 2 + dz_+ alzz)dz

Now for a() << 1; an integration by parts yields,

122
(73) o (ir) 4wk z  a(z)d(z)dz

If a(1i) = a, then

(74) ( (ka)2

Yra

In general, the forward scattered cross-section should be cal-

culated from Eq. (72) (the variational expression using the standard

eysical optics currents and Adachi's expressions Eq. (68) for the

scattered fields on the target surface) since this expression reduces,

as a first order approximation, to the well accepted value (ka)2 for

the normalized cross-section. The zero forward scatter predicted,
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as a first order apprdxifiatiorn -when the physical optics currents are

assumed over the entire sca er may not b6 incorrect in the sense I

that as the slope beco.nes very small- (a(z)-*O), the ,target becomes

a needle which may not cast a shadow, (and hence- have zero total scat-

ter), but for practical°-targe - a non-zero result is more reasonable. "1

It should be -noted that Eq. (74), the first order approximation

of the variational solution, Eq. (72),. is just the forward scattered

cross-section predicted by the standard physical optics results in

Eqs. (43) and (44). An examination of the standard physical optics

results reveals further that the normalized forward scatter cross-

section predicted is a constant (ka(fi))Z , independent of the surface

impedance. This same result has been demonstrated for the exact

solution of the scattering from spheres under the impedance boundary

condition, i s where it is shown that for large ka (sphere circumference

in wavelengths), a plot of the normalized forward scatter cross-

section vs ka approaches the value (ka) 2, independent of the surface

impedance of the spher.e.

Marcinkowski 6 has also shown in the case of diffraction by

an absorbing half-plane that the forward scattered fields are relatively

unaffected by the surface impedance.

One additional factor concerning the validity of this integral

formulation for imperfectly conducting long, thin scatterers should

-8
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be considered. Clearly, targets with a sharp apex or apices can

never satisfy the Leontovich conditions for applying approxirnate

boundary conditions at these points,. Hence, the axial echo area as

calculated from Eq. (55) should contain a different tip contribution.

However, for a(z) << 1, Eq. (55) should suffice except for very low

reflection shapes.

In summary, the results derived in this section should be

utilized as follows:

a. The monostatic, E-plane, and H-plane cross-sections of

general shapes are calculated from Eq. (46), (44), and (43), respec-

tively.

b. For targets in the "long, thin" classification$ the mono-

static cross-sections are calculated from Eq. (55) and the E-plane

cross-sections from Eq. (53) for bistatic angles less than the

specular reflection angle. The forward scatter cross-section is

given by Eq. (72).
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CHAPTER III

AXIAL BACKSCATTER 1
A. Semi-Infinite Cones 1

A semi-infinite cone characterized by a surface impedance

zs 4[7'-is shown in Fig. 2. From the figure, a(z)= z tan 0o .

a (Z

y I

Fig. 2. Semi-infinite cone. ii
Using Eq. (46) and performing the integrations yields,

(75) '(0) tan6 -0  sec o{Zs -z o
X2 161 zszo(l+Ztan2 00 )+(z,+zo)sec0 0 tane0 J

If 00 is small such that the "long, thin" approximation applies, then I
from Eq. (55), zs zo

(76) 0 tan6 1 s-

1 Z 161 l+tan O°+tan°00  "+-

0o zs
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Setting zs = 0 in either Eq. (75) or Eq. (76) yields the physical optics

approximation to a perfectly conducting semii-infinite cone as,

(77) M(0)- tanj' °

Thb axial hcho-#area, as calculated frorm Eq. (76) for semi-

infinite,€ chhesowith half angles of 10, 20, 30, and 45 degkees as a

function of the Impedance ratio$ zs/zo: is shown in-Fig. 3. Note-

that a reciprocal impedance ratio scale is also given extending:the

range of this parameter from 1 to co. If should be noted that in

Eqs. (46) and (55),

G'(O ) I _'
z= _ 1  1z o  zo  a{

The axial echo area from a semi-infinite cone is the tip contribution

discussed in Chapter II for a target with a sharp apex. Since, as

was pointed out in Chapter II, the conditions for application of the

impedance boundary condition are not satisfied at the tip, the re-

duction shown in Fig. 3 is an idealized case.

B. Double Cones

A double cone with the half angles 00 and 01 is shown in Fig. 4.

I ztan0 0 0 !.z:b,
(78) a (z)=I

-(z-c)tan 01 b <. z S c.3
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10-3'

I0-0

10-6 - ____

10-71

0 0.2 0.4 0.6 0.8 1.0
CO 5 2.5 Z, 1.66 1.25 1.0

Fig. 3. Axial backscatter from semi-infinite cones
as a function of the surface impedance.
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From Eq. (55), the norrnaliz&axial- echo area-of'anton-symfnetric[

double cone is given by,

G () tn - tej~kb[ 1-j~kb*]-1}
(79) 00)-an

,Ta~ 16(kb); tan e {e)'kb[j~k-_ jZkb+l1]ejZkc,1
tan 00

-where,

I --Ltan Oo 1- tan 0 0
zs zo

l+ z2tanO 1+-' tanG0
zs 0zo 0

zo
1 -+ tani 0 1 +±.tanG1

zs zo

0

Fig. 4. Double cone.
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The normalized axia. echo areas from a 0= 100 half angle .1
double cone with tan 01/tan 6o = 1.71234, as a function of kb for -j

Zs/Z o ratios of 0, .25, .5, and .75 are shown in Fig. 5.

Setting 01 = 00 and c = Zb :n Eq. (79) yields the normalized

axial echo area of a symmetric double cone as,

(0) tan C(eJZkb[ljZkbl) 
- 2

(80) ra 16(kb)2  D*{0Zkb[jZkb+l]-ej4kb )

zoz s1+- tan 00 1 + -. tan- 0
0

0 zs,
1--tan o 1 - - tan GO

The normalized axial echo areas of 100, 200, and 300 half angle

double cones as functions of the electrical length kb for z 5 /z o ratios

of 0, .25, .5, and .75 are given in Figs. 6, 7, 8, 9, 10, and 11. In

Figs. 6, 7, and 8, the cone half angle is the parameter, and in

Figs. 9, 10, and l1 the ratio zs/z o is the parameter.

From Eq. (80), the high and low frequency limits are given by,

• I(0) tan2 6o

(81) (" -  kb-oo - [C+ D]2

u-,(0) =tan 2 60 c(b)+8(kb)3 1  (~Zkbz1+(b) 2 1
a kb -. 0 16(kb)2 1 [ 3 II

The measured and theoretical axial backscatter from con-

ducting double cones as calculated from Eq. (56) are compared in

Fig. 12. 34
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0_____ 2_____ 4_____ 6__ _ 8 1
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10-I _ _

10.75

0 2kb 6 I1
Fig. 8. Normalized axial backscatter fromn symmetric double .

cones for a surface to free space impedance ratio A
of .75.
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10-2

10-4

0 2 4 kb 6 a1

Fig. 9. Normalized axial backscatter from a 10 deiree
half angle symmetric double cone.
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100 1___ _ z

10-'~~~~ _ _ _ 0.5 _ _ _ _ _ _

200 20

b

Fig.- 10. Normalized axial backacatter from a 20 degree -

half angle symmeteic double cone.
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I

I
Cone Measured Theoretical

0  6 01 H.P. V.P.
30 10 -2.0 -2.7 -2.36
30 20 -1.8 -0.5 +1.42
30 30 +0.5 +1.0 +0.68
20 10 -4.0 -4.0 -4.07
20 20 0.0 -1.0 -1.10
20 30 -1.5 -0.3 +1.42
10 10 -9.0 -8.5 -7.60
10 20 -5.0 -4.5 -4.07
10 30 -2.5 -2.7. -2.36

H.P. Horizontal Polarization
V.P. Vertical Polarization

Fig. 12. Measured and calculated axil backscatter
from symmetric and nonsymmetric double
cones. I
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C. S ili - 111iit v (yI I IldtI-S w ith Colil ca(,Ips

solt mg Ol 0 in E~q. (79) gives the normnaliz'ed axial ccho ai-ea

of, the somi- inllnite cyltinder capped with a cone of hialf angle 00)

shown in Fig. 13 as

20(0) _tan 0  1~b
Tr a" - (kb)z eJk[jkb-

I P4
Fig. 13. Semi-infinite cylinder capped by a cone.

The normalized axial echo area of a semi-infinite cylinder of

radius a capped with cones of half angles 100, 200 , and 300 as a

function of kb is shown in Figs. 14, 15, 16, 17, 18, and 19. In

Figs. 14, 15, and 16, the half cone angle is the parameter, and in

Figs. 17, 18, and 19, the impedance ratio zs/z is the parameter.
0

The high and low frequency limits are given by

o( - CZ tan' 60

Tr a2  kb 4
(83)

0,/ 0) -tan
2 

0O0 C' (kb)2

7r a2 kb - 04
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It is interesting to note that the result in Eq. (82) is genera:

attributed to the physical optics approximation for a finite, flat based -

cone. That is, Eq. (46) would give the same result as Eq. (82) for

any target whose illuminated surface was a cone. Clearly in the

limit as kv - co, where v is the illuminated length in the direction of "

the incident field, the axial echo area of rotationally symmetric targets

becomes independent of the target shape in the shadow region. Hence,

if kv does not -- oo the results as given by Eq. (45), should be con-

sidered to be those for semi-infinite cylinders capped by various

shapes.

41
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-* 0 2 206

0 kb000

Fig 1 4. Nr aie ailb-2ate r m ase iifnt

Fig.14. cylid radiul baccapcd byaroef a sur-ifacie

to free space impedance ratio of .25.
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'0-0

10-2

ic)4 K b1

02 4 6 8 10

0 kb I
Fig. 15. Normalized axial backscatter from a semi-infinite

cylinder of radius a capped by a cone for a rurface
to free space impedance ratio of .5.
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100

101-

10-2

t0.75

Fig 18. Normalized axial backscatter from a semni-infinite
cylinder of radius a capptd by a 30 degree half
angle cone.
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100________1

'0-0

10-1

b[kb

Fig. 19. Normalized axial backscatter from a semi-infinite
cylinder of radius a capped by a 30 degree half
angle cone.
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D. Parabolic Ogive

A parabolic ogive is shown in Fig. 20.

(84) a~)= a 2 zb

From Eq. (55), for i /tan E8o> z 8 /z 0 > tan 00,, the axial echo area is

given by,

4~0) = tan4 O i(k)Ysn(k)Zcs(k)
(85) 2 47 [.X sin(Zkb)cos(k)Ysn Zb Zco(2)+

Q~cos a(Ci(a)-Ci(a')+sina(si(a)-si(a')) +

R{cosP(Ci(13)-Ci(P ))+sin$3(si(P)-ui(P )} +

VY+Z) sin(2kb)cos(Zkb)+(X.-T) sin z(2kb)-T coon (21kb) +

Q(sina(Ci(a)-Ci(c4)~cosa(si(a) -si(cz'))} +

R{sinp3(Ci(p)-Ci(P'))coosP(s i(P )si(P'))}}a

where

a 2k(A+b), a Zk(A-b)

$3= k(B+b), $3=2k(B-b)

zob zob cot- sint
A - ,B- T- Ci(x)= -odtsi(x) - -dt

zs 0 Zoi t i t
k j JZS 3 I

kbJUA zs\ 3  1J O Z J kb I ZI Zo'\

tan3OOl\Zs/3 J{- L11 zs zo ta z\J k)

______ 181 -

-Y =tan2 00 L%2Zs z 0



1 zo zs" kb (zoY - (Zs aZ = -- T = t n o [ z s

tan 0 8 z zo tan- O)

_ n= kb )/ Ri

ta 5- 1 (ano/ Z, =tan O0 o/\tan 0 / *1

2a

The normalized axial echo areas of a slender parabolic ogive

with impedance ratios, zs/zo, of 0, and 0.5, are shown in Figs. 21

and 22. Now"' for x>> 1,

Ci(x) x

(86)

si(x) - ox

and in the limit as kb -o, for I/tan 0 > z 5 /z, z tan 00, 1

tana
(87) 77t 0 [fJo zs 21P-os4b

z Tj ta.-o (I+cos4kb

It is of interest to note that when the slope of the scatterer profile is

a function of z, the periodicity of the backscatter with kb is a function -,

of both kb and the surface impedance.
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E.r Sphere

A sphere of radius a is shown in Fig. 23. From the figure,

(88) a(z) =[Zaz-z
2 1 2

From Eq. (46) the normalized echo area is given by,

28~ 4(z o i(ka) Z 510 -(89 a(a - (AC+BD) + -(ZC +9dJI

;a Z. z / ik a- z Z/ Zk

L(BC AD) o coZk)-(B-D

where

A =cootZka(1+ !s)], A'Cos 2ka l+ 2)]

B =sin[Zka 1 + -8B' ain Zka (I +TZ

C'=4Ci [2ka (l+2 z)] - Ci E Zka L]

[5 [Z ka" [ + o] f k !1

D 11ka+ t)l J -si Zka -II
IS I I zo 12 I Z I,

IL [i Z s/J+2)]-s [2kal]
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1

The echo areas as functions of ka for impedance ratios

of 1 .5 anid 2 are Shown in Figs. 24 and 25. The M-e series solutions

under impedance boundary conditions' 5 are included in the figures. "I

In the limit as ka -',

0" zS "zo--~ -ka -

(90) 7T a z  
zs + Zo

Eq. (90) is merely the square of the infinite plane reflection coeffi-

cient for normal incidence. I

1

2I

Fig. 20. Parabolic ogive.

I-
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101

00

'CC

0 ) 3 4 6
kb

Fig. 21. Normalized axial backscatter from a parabolic ogive
for surface to free space impedance ratio of 0.
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101

100 - zsa0.5

2b 3 4 5

Fig. 22. Normalizt ,d axial backscatter from a parabolic ogive
for surfac(e to free space impedance ratio of 0.5. -
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a(z)

Fig. 23. Sphere.
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F i Exct Solution
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Fig. 24. Exact and approximat, e theoretical echo area of a sphere II
under impedance bouandary conditions for a surface to

free space impedance ratio of 1.5. "t
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10-1

I Exactolutio

I P.O._Approximation

10-31

Fig. 25. Exact and approximate theoretical echo area of a sphere
under impedance boundary conditions for a surface to
free space impedance ratio of 2.0.
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CHAPTERIfl
BISTATIC GROSS-SECTIONS,

A. Semi- Infinite Co nes

From Eq. (52), the E-plane cross -sectionof the semi-infinite ~

cone shown in Fig. 2 is given~by)

(91) al p) 47rkz tan'80 l [ zs otan 0 CZJI(Bz)ejAz dz1
E-plane0

F70uCos~ zs tan Oo1' J1 03z) ejA z +
zo + zstan 0 0 P 0  B e d

js z n io r(PC J,(Bz)eA dzI

w e B k sin p tan 0 ,2 A =k(cos P + 1).

Using the relations,'8

e-atJv(bt)dt - a2 + aV
0 bv aZ + b"

(92) -eat v(bt)tvdt (2b)vr(v+)I I,.
0 (a2 +b 2 )V+ 7J '

0e at v(bt)tv+ Idt Za(Zb) v r(v+4)

0 (a 2 +b? )v+fJ

.6p



yiel'as,

L[ [ cos P tan 067(93) 'P 4ir'tan4O Js !A (J#"P+jA)l

E-,lne In+.; ta e0  J +B A2
0 zs

Eolae+-0 a -. A0a 'J] 2j~~ -jA + B B

zo

zo
sin o 1 201_____ _ __ B

1 + Zo tan o  (B z  - A )
zs

Setting z s  0,

(94) ( 13 tan4 0 (cos f.+l)

X2  E-plane 7 isinzPtanZ0 o(cosp+l)2 .

From Eq. (51), the H-plane cross-section is given by,

(5) ( 4wk tan4 Oj L -col B2A
H-plane 1 +.i s tan 0 0 B -A' B

zo

[cos -tan 0o B2JT

Zo Bz J B7 -AT
+- tan 0zs

fsinP ]A-- 1 2
l tan (B' -A)

zo
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The E- and H..p'lane scattering cross-sections of a 10 degree semi-

infinite cone for impedance ratios, zS/Z 0 , Of 0, 0.5, and 1 are shown

in Figs. 26 and 27, respectively.

B. Double Cones (Condaicting)

If tne coordinate systemi shown in Fig. 4 is translated.

(z -z-b) then,

1tan 00,(z+b) -b . z . 0,
(96) aiz )_

-~tan (),(z.-c) 0 :. z :.c

The results from Eqs. (52) and (54) will be identical, so from Eq. (52),

(97 (T 4-i-k Ctan2 6(z+b)eik oB+)JJk sn Ptan 0(zi4) dz+

c2jzcos P +1)~ ae(-)d
t~an2 01 (z-ciekZ J[k sin Ptn0(z )

0

a change of variable gives,

(98) 044q3) = 4-tk tan 2 e 0 {e&iAb Yx e jAx Jo[rxldx}
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(99) Y3u Jo(u)ejklu du T _k 4u J1 Mue jku 10

oJ

jku J0 (u)e- ku L0 -jk roi(u)ejkudull

hence,

(100) a- P) =47rk' I tan - {z BbJj (Bb)+ jAbJ0 (Bb) -

je-jAb $AeO. x dy

*1
tan' 01 D-- j (Dc)+jACJo(Dc)_je-jAC~o o(D x)eJXdxl I A l~d

The integralaoku e u u ]

is tabulated s as

rao(% u)e j u du = Jc(k a) + jJs(, a).

Curves of Jc(k,a) and J5 (X,a) as a function of a with the parameter X

are shown in Appendix C. If the double cone is symmetric, then

b = c, D = -B, and 01 = 0o . From Eq. (100) the bistatic cross-section "I

of a symmetric double cone is obtained as, i
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4Trk2 tan4 00 1' B
jZAbJO(IBb)-je J, LAbj -,Ab-

(101) M() =[Bz - A2 ] j  o  A' A

jejAb jB 1 R 2

, AbJ Ab)
je~ :cf Ab AJsX

In the limit as kb -0,

4Trk 4 tan4 00 (cos 3 +l)3 b 3

(102) M' 3 )kb-O [ 3

[sin P tan 2  t a-(cosP+

1~sin2 P tal 2 
0.2,

(cosP +l) ,

for large kb,

(103) u! 4(P) 4tan,2 0 o  {Z(cos P +1)J 0 (kbsin P tanGO}
ra 2  [sinzPtan2 Go-(COsP+l)

The bistatic cross-section of a 20 degree half angle symmetric double

cone (b = 1.83X, c = .665k) as calculated from Eq. (101) is shown

in Fig. 28. Figure 28 also gives the experimentally measured E-

and H-plane cross-sections of this cone. lPe, .,riabl, good agree-

ment is obtained between the measured E-plane crtss-section and

the theoretical cross-section.
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Fig. 28. Theoretical E-plane and measured E- and H-plane1
bistatic cross-sections of a 20 degree half angle
symmetric double cone foir axial incidence.
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C. Semi-Infinite qylincler with a Cone Cap

If 01 is set equal to zero in Eq. (100), the bistatic H-plane

cross-section of the semil-infinite cylinder capped with a cone shown

j in Fig. 15 is obtained as,

H-plan 4w k2 tan8 [BbJj Bb+jAbJ0 (Bb)-je-Ab.

(104) n 1B= A2 ]

{J c [B/A, Ab] + jJs[B/A, AbI}

In the limit as kb - 0,

(105) w iaz (kb)' tanz 00

H-plane

For large kb,

(106) /rp N an e
H-plane [sin2 P tane0 -(coo + 1)f]

1sin p tan 00J1 (kb sinp1 tan0) 12 + [(con P3+1).T0(kb sinP1 tanO0 )]2}

From Eq. (54), the bistatic E-plane cross-section is,

(107 0MP) 4w 2  goe cos P3 tan e0  sin P3 B

E-plane B A ( 2 - 2

sin Pb J( jAb2
A J Bb)e
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In the limit as kb -0,

(40 kz tan" o(l + cos P )zkb-0 [sinl (tan Oo-1)-Z coso ]z

For large kb,

(109) E-planeAb 
si p Jl.(Bb)

E-p-,e 4os coo P + 1

. sinp tanz2 oJj (Bb)+j(cos p+l)tan 0oJo'Bb)
sinz P tan 9o - (cos p + 1)2J

rjsin J1 (Bb) tan 0 (c sf +l)Jo(Bb)-jsin A tanz 2 oJ, (Bb)."
+sinAb + 2. .........

cosP +1 sin p tan go - (cos P + 1) a

The E- and H-plane scattering cross-sections of a semi-infinite

cylinder capped with a 20 degree half angle cone (kb 11.5) are

shown in Fig. 29.

D. Finite Cylinder with Cone Caps

A finite cylinder with cone caps is shown in Fig. 30. As was

the case with the double cones, only one bistatic cross-section is

predicted for this target by the long, thin body approximation.

From Fig. 30,

tan 0 (b+z) -b <. z S. 0
(110) a(z) a 0< z <N P

tane (c-z) N1z c.

Using Eq. (52),
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Fig. 29. Theoretical E- and H-plane bistatic cross-sections
of a semi-infinite cylinder capped with a 20 degree
half angle cone for axial incidence.

69



NI

Fig. 30. Finite cylinder with cone caps.
0i

(111) (TM(P) 47rk2' tan2 So (b+z)J°[ktane° sinp(b+z)]eJkZ(cosP+l)dz I

-tan z01 cz-Jo[ktanOlsinp(c-z)]ejk ce sOP +1) dz .

A change of variable gives, [

(112) k Ooe-jAb x eJAxdx
0

-tan ( e jAc S' x J(Dx)eAx dx

where

A = k(cos + 1) 1
B = k sin tan 0o

D = k sin P tanOj,

and the integrals were evaluated for double cones. If the cone caps -

are identical, (0o = 0 ) there is obtained,
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(113) 4() 4irk 2 tarL4 00  Bb J1 (Bb)+jAb Jo(Bb).je-jAb
[B? - A' ]2

" _ BJc[B/AAbI+jJs[B/A, Ab]}

+ejAN [-bJ 2 J

[ABbJl(Bb)+jAbJo(Bb)-j ejAb c[B/A, Ab]-jJs [B/A, Ab]

It can be seen from Eq. (113) that for particular lengths, N, the bistatic

cross-section of a finite cylinder with cone caps reduces to that for the

double cone. Setting the bistatic angle to zero in Eq. (112), the axial

backscatter from a finite cylinder with cone caps is obtained.

_______j~kb(114) 4-(O) = tanZ 2 4 (j2kb-l)-1
4(kb)z I

+ tanz 61 ejZkN [jZk(c-N)+l I +eJkc
tanz 2e O

The bistatic cross-section of a finite cylinder with ZOO cone caps

is shown in Fig. 31. In Appendix B, the axial echo areas of a double

cone, semi-infinite cylinder with cone cap, and finite cylinder with

cone caps are compared.
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Fig. 31. Theoretical bistatic cross-section of a finite
cylinder capped by 20° half angle cones for
axial incidence.
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CHAPTER V

DISCUSSION AND CONCLUSIONS

Four limitations or failings are generally attributed to the

physical optics method; they are: (1) Incorrect results in the

Rayleigh and low resonance regions and hence a limitation on target

size, (2) Reciprocity is not satisfied, (3) The polarization dependence

for backscatter is not dependent on scatter shape and incorrect in

many cases, and (4) The target shape in the shadow region is not

taken into account. Obviously, the limitation of incorrect polari-

zation dependence for backscatter does not apply here since axial

incidence and rotationally symmetric targets are specified. How-

ever, the other restrictions given above do apply to Eqs. (43), (44),

and (46), the standard physical optics results. The inclusion of a

class of imperfectly conducting targets with an arbitrary surface

impedance does not alter these restrictions. In any case, a target

which satisfies the conditions for application of the impedance

boundary condition can never become a Rayleigh scatterer. It has

been shown,2 that the physical optics method does not, in general,

satisfy reciprocity, and this restriction clearly applies to the modi-

fication developed here. The restriction on target size, and the

failure to consider the target shape in the shadow region are directly

related. The low frequency response predicted by physical optics is
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incorrect because the currents induced on the shadow portion of the

scatterer are not considered. When the target size in wavelengths

becomes sufficiently large, these shadow currents are essentially

zero and the physical optics result is correct. The works of Foch, 8

25
Keller, and Kennaughp Z3.z4 have been concerned, directly or in-

directly, with the problem of correctly predicting the low frequency

response. Clearly: the method of accounting for the shadow currents

used here lacks the sophistication and generality of the above technli-

ques, but for a restricted class of targets and a particular choice of

the source location, the simple expedient of extending the physical

optics currents over the entire scatterer has been shown to yield

surprisingly good results.

Two sets of equations predicting the scattezing for axial inci-

dence from rotationally symmetric targets have been developed.

The standard (or rate of change of area in the receiver direction over

the illuminated target area) physical optics approximation has been

extended to include a class of imperfectly conducting targets. It is

important to note that it is not necessary tl.a the imperfectly con-

ducting target be homogeneous; the equations aro, applicable to layered

targets (e.g.,absorber coated) as long as the exterior surface satia-

fies the Leontovich ' conditions. Figures 26 and 27 which compare

the exact and approximation solutions for bac. -scatter from spheres
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indicates the validity of the approximation. Emphasis in this report,

however, has been on the second set of derived equations which are

applicable to long, thin, Adachi3 type targets. In this case,

Adachi's solution, or rathe: the first order approximationi to it, has

been extended to imperfectly conducting targets and to the bistatic

configuration. Unfortunately, the long, thin target modification of

the physical optics approximation removes the polarization depend-

ence of the solution for finite scatterers and only one cross section

is predicted. Experimental evidence has thus far supported the

postulate that the predicted cross-section is valid for the E-plane,

but additional verification is necessary before this conclusion may

be stated in general. In Fig. 12, excellent agreement between the

theoretical and measured axial backscatter from symmetric and

non-symmetric conducting double cones is obtained. The validity of

the bistatic solution is demonstrated in Fig. 30, where the measured

an'- theoretical E-plane cross-sections of a symmetric double cone

are compared. Thus, an exceedingly simple expression has been

derived which is not subject, at least as stringently, to two of the

most serious limitations of physical optics. The bistatic solution,

however, does not have a polarization dependence for finite targets,

and the results are incorrect, in general., for bistatic angles greater

than the specular reflection angle.
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The approximate Fresnel reflection coefficients derived in

Chapter II, and -,pplied to the physical optics scattering approxima-

tion, when compared to the accurate Fresnel expressions$ exhibit

an error of the order of (cos' q)/( rer). (0 is defined in Fig. 1, R r,

er are; respectively, the relative permeability and permittivity of

the target medium). Obviously, the approximate reflection coeffi-

cients are least valid for long, thin targets with apices, but since a

large 1c product was assumed, the condition, (cos2 e)/(R rEr)<< 1,

should hold even for these targets.

The general expressions for axial backscatter in Eqs. (55) and

(56) offer a means for determining the terminating shape necessary I

to minimize the axial return. That is, given a fixed target shape in

the illuminated region, the terminating shape in the shadow region

which will minimize the axial return can be determined. This work

is beyond the scope of this report, but both a rigorous analysis by

the calculus of variations, and a simple assumed polynomial solution

appear to be feasible. Keller 9 has made some recommendations

concerning this problem which the results in Eq. (56) appear to

support.

In summary, the following conclusions may be stated. A

physical optics approximation to the scattering, for axial incidence,

from rotationally symmetric targets with an arbitrary surface
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impedance has been derived. These expressions are subject to the

usual physical optics limitations.

A modified physical cptics approximation to the scattering,

for axial incidence, from rotationally symmetric targets with an

arbitrary surface impedance applicable to long, thin targets with

apices has been derived. These results give only the monostatic

and E-plane bistatic cross-sections, and are of limited usefulness

since axial incidence is assumed, but the predicted scattering for

conducting targets agrees remarkably well with measured data. In

the case of imperfectly conducting long, thin targets, no experimental

verification of the derived equations has been obtained and the results

are still in question. The modified physical optics approximation

assumes that the diffracted field in the shadow region has a wave-

number very near that of the incident field, and for lossy targets this

may not be true evenfor very thin scatterers.

For targets of the long, thin class with apices, the axial back-

scatter is single-valued, that is, the axial backscatter from either

end of a non-symmetric double cone, for example, is the same.
I
L For targets of the long, thin class with apices, the periodicity

T* of the frequency response is dictated by tae electrical length from the
t

nose to any discontinuities in the slope of the target, the overall

electrical length, and if the slope of the target is not constant, by the
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surface impedance of the scatterer. Thus, for example, the period I
of a conducting double cone will be approximately twice that of a "

conducting double cone of the same dimensions for which the wedge

where the cone bases join has been smoothed.

For bistatic angles greater than the specular reflection angle,

the long, thin target equations led to questionable cross-sections,

and the standard physical optics results should be used. A more

reasonable expression for the forward scatter cross-section is

available from the ,ariational result in Eq. (70).

The surprising success, for a particular class of conducting

targets, of an exceedingly simple modification of physical optics in

accounting for the shape of the target in the shadow region indicates

that perhaps the physical optics method has not yet been fully utilized

in the approximate solution of scattering problems. It may be merely

fortuitous that this modification works so well, but some effort should

be expended in an attempt to extend the results to a more general

.:]ass of targets, and ultimately to removing the sourc ,from' he sym-

metry axis. i
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APPENDIXA EVALUATION OF I =o' uJ(u)ejku du

a

From Eq. (57)., the integral may be written as

(A-i) T d ci [uJ1 (u)]e jku du.

An integration by parts gi.ves,

(A-Z) I = u J, (u)e j ku -kz u Jla(2)eJku du.

The integral may also be written as,

(A-3) z I e jku 1 e
u ] - e[.Ldu,

and an integration by parts gives

(A-4) L ~a1 Jo(u)eJkU du+ u jku j a. +(A-4 Ya 0 - - Jku o(U) a

I- z u J, (u)eJkU du

Multiplying Eq. (A-4) by (jk)2 and adding to Eq. (A-2),

*The author is indebted to Dr. E. M. Kennaugh for this derivation.
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(A-5) 1= (jk)j2 (u)ejku a +jku I6t~ek a2

-jk ,T(u)eiku du}
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APPENDIX B - AXIAL BACKSCATTER OF CONE COMBINATIONS 1

The axial backscatter from a symmetric double cone, seini- I
infinite cylinder with a cone cap, and a finite cylinder with symmetric

cone caps as predicted by the modified physical optics approximation

is shown in Fig. A. The targets are assumed to be perfectly "

conducting.

iiI
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Fig. A. Normalized a~dal backucatter from a conducting
symmetric double cn, semi- infinite cylinder
with cone cap, and finite cylinder with symmetric
cone caps.
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APPENDIX C. CONCERNING Jo(kx)jxdx=Jc(k,u)+j 5(k, u)

As previously mentioned, tabulated values of JcO , u) andI

J,(X , u) are available, 5 for

0:.Xu< 1. 5

O~u < 1.5/k,

The increments in k and u in the tables make interpolation

necessary, and for that purpose, the curves of Jc(k, u) and J,(X, u)

shown respectively in Figs. A- 1 and A-fl were prepared.

When X u . 1. 5, the integral may be written as,

(C-1) SUo~ku)ejx dx= ::x~~ dx +
0 0

Co eJ*-<dx,

where Xiu 1: 1. 5, and the asymptotic form2  J0 ~k X) Co.4 N X co

X~x -ir /41 has been uoed for X x > 1. 5. Since,

(C-2) etdt:: C(z) - jS(x),

where C(z) and S(z) are Fresnel's integrale,
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0.0 10 2 . 4 0-

-075

00
as 20 3ucto 4o0 50 with1Y du~ paae n

% I

0259



2.75
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(C-3) SUo(Xxejxdx~ Jc(X,u) +jJ8 (),,u') +
0

G -j) [C[(X+)I]C(X+1)u]+i S[(X+1)U]-j S[(X+1)U] +

C(z) and S(z) are tabulated in Reference 17.
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